메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


출처 : http://letsexplorehadoop.blogspot.com/2016/05/upsert-in-hive-3-step-process.html



아래설명을 기준으로 hive에서 실행해본 hive script

--------------------------------------------------------------------------------------------------

-- create table if not exists site_view_hist(

-- brower_name string,

-- clicks_count int,

-- impressions_count int)

-- partitioned by (hit_date date)

-- row format delimited

-- fields terminated by ',';


-- gooper@gsda1:/var/log$ hdfs dfs -cat /user/hive/warehouse/site_view_hist/hit_date=2016-01-01/000000_0

--iexplorer,123,456


SET hive.support.concurrency = true;

SET hive.enforce.bucketing = true;

SET hive.exec.dynamic.partition.mode = nonstrict;

SET hive.txn.manager =org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;

SET hive.compactor.initiator.on = true;

SET hive.compactor.worker.threads = 1;


truncate table site_view_hist;

truncate table site_view_raw;



insert into table site_view_hist partition(hit_date='2016-01-01') values('iexplorer', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-01') values('firefox', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-01') values('chrome', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-02') values('firefox', 111, 431);

insert into table site_view_hist partition(hit_date='2016-01-03') values('chrome', 234, 567);

insert into table site_view_hist partition(hit_date='2016-01-03') values('iexplorer', 234, 567);

insert into table site_view_hist partition(hit_date='2016-01-03') values('firefox', 987, 654);

insert into table site_view_hist partition(hit_date='2016-01-04') values('chrome', 529, 912);

insert into table site_view_hist partition(hit_date='2016-01-05') values('firefox', 911, 888);

insert into table site_view_hist partition(hit_date='2016-01-06') values('iexplorer', 900, 833);



select * from site_view_hist;


-- create table if not exists site_view_raw(

-- brower_name string,

-- clicks_count int,

-- impressions_count int)

-- partitioned by (hit_date date)

-- row format delimited

-- fields terminated by ',';


insert into table site_view_raw partition(hit_date='2016-01-01') values('chrome', 246, 789);

insert into table site_view_raw partition(hit_date='2016-01-01') values('firefox', 999, 200);

insert into table site_view_raw partition(hit_date='2016-01-31') values('iexplorer', 144, 999);


select * from site_view_raw;



select h.* from site_view_hist h where h.hit_date in (select distinct hit_date from site_view_raw r);


drop table site_view_temp1;


--아래 설명에서 subquery부분에 brower_name is not null을 추가하여 파티션만 있고 데이타 없는 경우는 포함되지 않도록함

create table site_view_temp1

as select h.* from site_view_hist h where h.hit_date in (select distinct hit_date from site_view_raw r where r.brower_name is not null);


select * from site_view_temp1;


create table site_view_temp2 as select t1.* from site_view_temp1 t1

where not exists

(select 1 from site_view_raw r

where t1.brower_name=r.brower_name

and t1.hit_date=r.hit_date);


select * from site_view_temp2;



insert into table site_view_temp2

select * 

from site_view_raw;


select * from site_view_temp2;


insert overwrite table site_view_hist

partition(hit_date)

select * from site_view_temp2;



select * from site_view_hist;

--------------------------------------------------------------------------------------------------

UPSERT in Hive(3 Step Process)

In this post I am providing a 3 step process for performing UPSERT in hive on a large size table containing entire history.
Just for the audience not aware of UPSERT - It is a combination of UPDATE and INSERT. If on a table containing history data, we receive new data which needs to be inserted as well as some data which is an UPDATE to the existing data, then we have to perform an UPSERT operation to achieve this.

Prerequisite – The table containing history being very large in size should be partitioned, which is also a best practice for efficient data storage, when working with large data in hive.

Business scenario – Lets take a scenario of a website table containing website metrics as gathered from different browsers of visitors who visited the website. The site_view_hist table contains the clicks and page impressions counts from different browsers and the table is partitioned on hit_date(the date on which the visitor visited the website).
Clicks – number of clicks(Eg on adds displayed) done by visitor on website page.
Impressions – number of times the website pages or different sections were viewed by the visitor.

Problem statement - If we receive correction in the number of clicks and impressions as recorded by browser, we need to update them in the history table and also insert any new records we received.
Lets dive into it:
In the history table we have browser_name and hit_date as a composite key which will remain constant and we receive updates in the values of clicks_count and impressions_count columns.
DDL of history table

Data:

Now suppose we receive records for date 2016-01-01(marked in blue) for firefox and chrome browsers, with an updated value of clicks and impressions, and we also received a new record(iexplorer) for 2016-01-31. Let us store these new and updated records in the following raw table:
DDL of Raw table




Data

Now we need an UPSERT solution, which updates the records of site_view_hist table for hit_date 2016-01-01 and insert the new record for 2016-01-31.
                                               SOLUTION (3 STEP):
To achieve this in an efficient way, we will use the following 3 step process:
Prep Step - We should first get those partitions from the history table which needs to be updated. So we create a temp table site_view_temp1 which contains the rows from history with hit_date equal to the hit_date of raw table.
This will bring us all the hit_date partitions from history table for which atleast one updated record exists in the raw table.
Note - Instead of table we can also create a view for efficient processing and saving storage space.


Data of site_view_temp1 table:

Step 1 – From these fetched partitions we will separate the old unchanged rows. These are the rows in which there is no change in the clicks and impressions count. For this we will create a temp table site_view_temp2 as follows:








Data of site_view_temp2 table:

Step2 – Now we will insert into this new temp table, all the rows from the raw table. This step will bring in the updated rows as well as any new rows. And since site_view_temp2 already contained the old rows, so it will now have all the rows including new, updated, and unchanged old rows. Following query does this: 



New Data of site_view_temp2 table

Step3 – Now simply insert overwriting the site_view_hist table with site_view_temp2 table, will provide us the required output rows including two updated rows for 2016-01-01 and one new inserted row for 2016-01-31.
Catch – Since the history table is partitioned on the hit_date, the respective partitions will only be overwritten as follows:




Final history table  with updated and inserted rows:

Benefits of this approach:         
  1. In the prep step itself since we are fetching just the partitions we have to update, so we are not scanning the whole history table. This makes our processing faster.
  2. In the final step as we are insert overwriting the history with the temp table, we are touching just the partition we want to update along with a new partition created for the new record.This gives a high performance gain, as I gained for my production process on a 6.7 TB history table with over 5 billion records. But since my 3 step process(included in one hive script) just touched few partitions of few thousand rows, the process completed in just minutes.
번호 제목 날짜 조회 수
690 AIX 7.1에 Hadoop설치(정리중#2) 2016.09.20 2634
689 Github를 이용하는 전체 흐름 이해하기 2016.11.18 2641
688 windows 혹은 mac에서 docker설치하기 위한 파일 2017.10.13 2647
687 Runtime.getRuntime().exec(cmd) sample 소스 2015.11.19 2649
686 Oracle 10g 혹은 12c 를 19c로 Upgrade시 Cloudera Cluster작업에 필요한 작업 2025.01.12 2662
685 Core with name 'xx_shard4_replica1' already exists. 발생시 조치사항 2017.07.22 2667
684 [MemoryLeak분석]다수의 MongoCleaner 쓰레드가 Sleep상태에 있으면서 Full GC가 계속 발생되는 문제 해결방법 file 2017.01.11 2675
683 딥러닝 수학/알고리즘 '한국어' 강의 2016.04.10 2685
682 TopBraid Composer에서 SPIN 사용법 file 2016.02.25 2688
681 lagom의 online-auction-java프로젝트 실행시 "Could not find Cassandra contact points, due to: ServiceLocator is not bound" 경고 발생시 조치사항 2017.10.12 2696
680 S2RDF를 실행부분만 추출하여 1건의 triple data를 HDFS에 등록, sparql을 sql로 변환, sql실행하는 방법및 S2RDF소스 컴파일 방법 2016.06.15 2700
679 HBase write 성능 튜닝 file 2017.07.18 2703
678 HA(Namenode, ResourceManager, Kerberos) 및 보안(Zookeeper, Hadoop) 2018.03.16 2707
677 파일은 남겨두고 파일 내용만 지우고자 할 때. 2017.08.30 2710
676 down된 broker로 메세지를 전송하려는 경우의 오류 내용및 조치사항 2016.08.12 2732
675 [CDP7.1.7, Replication]Encryption Zone내 HDFS파일을 비Encryption Zone으로 HDFS Replication시 User hdfs가 아닌 hadoop으로 수행하는 방법 2024.01.15 2737
674 halyard 1.3의 rdf4j-server.war와 rdf4j-workbench.war를 tomcat deploy후 조회시 java.lang.NoClassDefFoundError: org/apache/hadoop/hbase/Cell발생시 조치사항 2017.07.05 2744
673 windows10 pro에서 microservice pattern책의 예제를 kubernetes에서 기동하는 방법 2022.01.30 2761
672 HDFS상의 /tmp폴더에 Permission denied오류가 발생시 조치사항 2017.01.25 2763
671 SPARQL의 유형, SPARQL 만들기등에 대한 설명 2016.02.18 2768
위로