메뉴 건너뛰기

Cloudera, BigData, Semantic IoT, Hadoop, NoSQL

Cloudera CDH/CDP 및 Hadoop EcoSystem, Semantic IoT등의 개발/운영 기술을 정리합니다. gooper@gooper.com로 문의 주세요.


출처 : http://letsexplorehadoop.blogspot.com/2016/05/upsert-in-hive-3-step-process.html



아래설명을 기준으로 hive에서 실행해본 hive script

--------------------------------------------------------------------------------------------------

-- create table if not exists site_view_hist(

-- brower_name string,

-- clicks_count int,

-- impressions_count int)

-- partitioned by (hit_date date)

-- row format delimited

-- fields terminated by ',';


-- gooper@gsda1:/var/log$ hdfs dfs -cat /user/hive/warehouse/site_view_hist/hit_date=2016-01-01/000000_0

--iexplorer,123,456


SET hive.support.concurrency = true;

SET hive.enforce.bucketing = true;

SET hive.exec.dynamic.partition.mode = nonstrict;

SET hive.txn.manager =org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;

SET hive.compactor.initiator.on = true;

SET hive.compactor.worker.threads = 1;


truncate table site_view_hist;

truncate table site_view_raw;



insert into table site_view_hist partition(hit_date='2016-01-01') values('iexplorer', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-01') values('firefox', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-01') values('chrome', 123, 456);

insert into table site_view_hist partition(hit_date='2016-01-02') values('firefox', 111, 431);

insert into table site_view_hist partition(hit_date='2016-01-03') values('chrome', 234, 567);

insert into table site_view_hist partition(hit_date='2016-01-03') values('iexplorer', 234, 567);

insert into table site_view_hist partition(hit_date='2016-01-03') values('firefox', 987, 654);

insert into table site_view_hist partition(hit_date='2016-01-04') values('chrome', 529, 912);

insert into table site_view_hist partition(hit_date='2016-01-05') values('firefox', 911, 888);

insert into table site_view_hist partition(hit_date='2016-01-06') values('iexplorer', 900, 833);



select * from site_view_hist;


-- create table if not exists site_view_raw(

-- brower_name string,

-- clicks_count int,

-- impressions_count int)

-- partitioned by (hit_date date)

-- row format delimited

-- fields terminated by ',';


insert into table site_view_raw partition(hit_date='2016-01-01') values('chrome', 246, 789);

insert into table site_view_raw partition(hit_date='2016-01-01') values('firefox', 999, 200);

insert into table site_view_raw partition(hit_date='2016-01-31') values('iexplorer', 144, 999);


select * from site_view_raw;



select h.* from site_view_hist h where h.hit_date in (select distinct hit_date from site_view_raw r);


drop table site_view_temp1;


--아래 설명에서 subquery부분에 brower_name is not null을 추가하여 파티션만 있고 데이타 없는 경우는 포함되지 않도록함

create table site_view_temp1

as select h.* from site_view_hist h where h.hit_date in (select distinct hit_date from site_view_raw r where r.brower_name is not null);


select * from site_view_temp1;


create table site_view_temp2 as select t1.* from site_view_temp1 t1

where not exists

(select 1 from site_view_raw r

where t1.brower_name=r.brower_name

and t1.hit_date=r.hit_date);


select * from site_view_temp2;



insert into table site_view_temp2

select * 

from site_view_raw;


select * from site_view_temp2;


insert overwrite table site_view_hist

partition(hit_date)

select * from site_view_temp2;



select * from site_view_hist;

--------------------------------------------------------------------------------------------------

UPSERT in Hive(3 Step Process)

In this post I am providing a 3 step process for performing UPSERT in hive on a large size table containing entire history.
Just for the audience not aware of UPSERT - It is a combination of UPDATE and INSERT. If on a table containing history data, we receive new data which needs to be inserted as well as some data which is an UPDATE to the existing data, then we have to perform an UPSERT operation to achieve this.

Prerequisite – The table containing history being very large in size should be partitioned, which is also a best practice for efficient data storage, when working with large data in hive.

Business scenario – Lets take a scenario of a website table containing website metrics as gathered from different browsers of visitors who visited the website. The site_view_hist table contains the clicks and page impressions counts from different browsers and the table is partitioned on hit_date(the date on which the visitor visited the website).
Clicks – number of clicks(Eg on adds displayed) done by visitor on website page.
Impressions – number of times the website pages or different sections were viewed by the visitor.

Problem statement - If we receive correction in the number of clicks and impressions as recorded by browser, we need to update them in the history table and also insert any new records we received.
Lets dive into it:
In the history table we have browser_name and hit_date as a composite key which will remain constant and we receive updates in the values of clicks_count and impressions_count columns.
DDL of history table

Data:

Now suppose we receive records for date 2016-01-01(marked in blue) for firefox and chrome browsers, with an updated value of clicks and impressions, and we also received a new record(iexplorer) for 2016-01-31. Let us store these new and updated records in the following raw table:
DDL of Raw table




Data

Now we need an UPSERT solution, which updates the records of site_view_hist table for hit_date 2016-01-01 and insert the new record for 2016-01-31.
                                               SOLUTION (3 STEP):
To achieve this in an efficient way, we will use the following 3 step process:
Prep Step - We should first get those partitions from the history table which needs to be updated. So we create a temp table site_view_temp1 which contains the rows from history with hit_date equal to the hit_date of raw table.
This will bring us all the hit_date partitions from history table for which atleast one updated record exists in the raw table.
Note - Instead of table we can also create a view for efficient processing and saving storage space.


Data of site_view_temp1 table:

Step 1 – From these fetched partitions we will separate the old unchanged rows. These are the rows in which there is no change in the clicks and impressions count. For this we will create a temp table site_view_temp2 as follows:








Data of site_view_temp2 table:

Step2 – Now we will insert into this new temp table, all the rows from the raw table. This step will bring in the updated rows as well as any new rows. And since site_view_temp2 already contained the old rows, so it will now have all the rows including new, updated, and unchanged old rows. Following query does this: 



New Data of site_view_temp2 table

Step3 – Now simply insert overwriting the site_view_hist table with site_view_temp2 table, will provide us the required output rows including two updated rows for 2016-01-01 and one new inserted row for 2016-01-31.
Catch – Since the history table is partitioned on the hit_date, the respective partitions will only be overwritten as follows:




Final history table  with updated and inserted rows:

Benefits of this approach:         
  1. In the prep step itself since we are fetching just the partitions we have to update, so we are not scanning the whole history table. This makes our processing faster.
  2. In the final step as we are insert overwriting the history with the temp table, we are touching just the partition we want to update along with a new partition created for the new record.This gives a high performance gain, as I gained for my production process on a 6.7 TB history table with over 5 billion records. But since my 3 step process(included in one hive script) just touched few partitions of few thousand rows, the process completed in just minutes.
번호 제목 날짜 조회 수
690 [oozie]oozie ssh action으로 패스워드 없이 다른 서버에 ssh로그인 하여 shellscript호출하는 설정하는 방법 2022.11.10 4294
689 kudu의 내부 table명 변경하는 방법 2022.11.10 3808
688 kerberos연동된 CDH 6.3.4에서 default realm값이 잘못된 상태에서 서비스 기동시 오류 2022.10.14 4277
687 [impala]쿼리 수행중 발생하는 오류(due to memory pressure: the memory usage of this transaction, Failed to write to server) 2022.10.05 4257
686 [Kerberos인증] /var/log/krb5kdc.log파일 기준으로 인증요청(AS), 티켓확인(TGS)이 진행되는 로그 기록 2022.09.21 4421
685 Oracle 12c DB의 LOB타입 컬럼이 있는 테이블을 import할 때 주의 할 사항 2022.09.14 4411
684 [kerberos]Kerberos HA구성 참고 페이지 2022.08.31 3321
683 [CDP7.1.7]Impala Query의 Memory Spilled 양은 ScratchFileUsedBytes값을 누적해서 구할 수 있다. 2022.07.29 4420
682 [Kudu]Schema별 혹은 테이블별 사용량(Replica포함) 구하는 방법 2022.07.14 4403
681 [Cloudera 6.3.4, Kudu]]Service Monitor에서 사용하는 metric중에 일부를 blacklist로 설정하여 모니터링 정보 수집 제외하는 방법 2022.07.08 4240
680 small file 한개 파일로 만들기(text file 혹은 parquet file의 테이블) 2022.07.04 3740
679 javax.net.ssl.SSLHanshakeException: SSLHandshakeException invoking https://mainCluster.gooper.com:7183/api/v1/users: sun.security.validator.ValidatorException: No trusted certificate found 2022.06.29 3867
678 Cloudera Manager의 Java Heap Size변경하는 방법 2022.06.27 4433
677 [Sentry] sentry메타 DB를 이용하여 테이블에 매핑되어 있는 role명칭 찾는 방법. 2022.06.22 4191
676 Authorization within Hadoop Projects 2022.06.13 3045
675 CDP에서 AD와 Kerberos를 활용하여 인증 환경을 구축하는 3가지 방법 2022.06.10 3891
674 [AD(LADP)] CDP1.7에서 AD및 Kerberos를 연동해도 각 노드에 os account, os group은 생성되어야 하지만 SSSD서비스를 이용하면 직접 생성될 필요가 없다. 2022.06.10 4080
673 Query 1234:1234 expired due to client inactivity(timeout is 5m)및 invalid query handle 2022.06.10 3775
672 HDFS 파일및 디렉토리 생성시 생성방법에 따라 권한이 다르게 부여된다. 2022.05.30 4266
671 [Cloudera Agent] Metadata-Plugin throttling_logger INFO (713 skipped) Unable to send data to nav server. Will try again. 2022.05.16 4408
위로